Calendar of
Mathematical Imagery

$$
2012
$$

@AMS
$\frac{\text { Anerican Mantematica sociriv }}{\text { wwwams.orz }}$

＂Magic Square 25 Study，＂by Margaret Kepner（Washington，DC） First Place Award， 2011 Mathematical Art Exhibition
Archival inkjet print， $12.5 " \times 12.5 "$ ，2010．Magic squares are numerical arrays that have substructures with constant sums．This design is based on a magic square of order 25 ，containing the numbers from 0 to 624 ．Each row，column，and main diagonal sums to the＂magic constant＂of 7800 ．The numbers in the magic square are represented by a visual base－ 5 system：four concentric squares serve as the 1 ， 5， 25 ，and 125 places，while shades of grey stand for the numerals 0 to 4 ．Coding the numbers into their base－5 versions yields a pattern
of 625 unique，nested－squares in shades of grey．This particular magic square also has a substructure of 25 mini－squares of size 5 ．Each of 62 unique，nested－squares in shades of grey．This particular magic square also has a substructure of 25 mini－squares of size 5 ．Each
of these mini－squares is＂magic＂（although the numbers are not consecutive），with rows，columns，and diagonals summing to 1560 ．In addition，certain other groups of 5 squares add up to 1560 ．Examples are the quincunns and the plus－sign shapes（when fully contained
in a mini－square）．The colored accents are used to indicate a few of these＂magic＂substructures．－Margaret Kepner

JANUARY 2012

SUNDAY	MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY	SATURDAY
1	2	3	4	5	6	7
New Years Day						

"Snowflake Model 5," by David Griffeath (University of Wisconsin-Madison) and Janko Gravner (University of California, Davis)
In nature roughly a quintillion molecules make up every crystal that falls to earth, with the shape dictated by temperature, humidity and intricate has captivated scientists since the early 1600 s. Now we have simulated their 3D growth using a computational model that faithfully emulates both the basis shapes and the fine details and markings of the full range of observed forms. Our model is driven by
diffusion-limited attachment of micron-scale blocks of ice: read about the underling mathematics at http://psoup.math.wisc.edu/ diffusion-limited attachment of micr
Snowfakes.htm. -David Griffeath

FEBRUARY 2012

SUNDAY	MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY	SATURDAY
			1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29			

	M	T	W	T	T		
	2	3		5	5	6	7
8	9	910	1	12	2		4
15	1516	17	18	19	2		1
22	23	24	2	26	2		28
29	30						

\left.| MARCH 2012 | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| S M | T | W | T | F | S |
| 4 | | | 6 | 1 | 2 |$\right)$

"Circles on Orthogonal Circles," by Anne Burns (Long Island University, Brookville, NY) Third Place Award, 2011 Mathematical Art Exhibition
Digital print, 12" $\times 16^{",}$ 2010. A loxodromic Möbius transformation has two fixed points, one attracting and the other repelling. Starting with a small circle around the repelling fixed point, and repeatedly applying the Möbius transformation, results in a family of circl connecting the fixed points and shrink as they are attracted to the other fixed point. Each circle in a second family of circles pas through the fixed points and is mapped to another circle in that family. Each circle in the second family is orthogonal to every circle in the first family. -Anne Burns (http://www.anneburns.net)

Notices

Readers may view the entire issue of NOTICES OF THE AMS in pdf format-page-by-page as one
would browse the print issue-or by any section page, email the feature articles to colleagues, and ink directly from the issue to obtain information link directly from the issue to obtain information
for Notices authors, contact editors and staff, see for Notices authors, contact editors and staff, see
advertisements, and view issues going back to 1995 . See www.ams.org/notices/

MARCH 2012
 SUNDAY MONDAY

 TUESDAY WEDNESDAY| DAY | THURSDAY | FRIDAY | SATURDAY |
| ---: | ---: | ---: | ---: |
| | 1 | 2 | 3 |
| | | | |
| | | | Ans Sectional Meeting |

3-4. Snictional Meetings (Western)
10-11: University of South Florida, Tampa (Southeastern)
17-18: George Washington University, Washington, DC (Eastern) 30-April 1: University of Kansas, Lawrence (Central)

4	5	6	7	8	9	10
11	12	13	14	15	16	17
Ans seet			pilay			Ans sect
18	19	20	21	22	23	24
mal Meeins					Emmy Neceter (1882)	
25	26	27	28	29	30	31
						Rene Desares

FEBRUARY 2012

S	M	T	W	T	F	S
			1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29			

APRIL 2012						
S	M	T	W	T	F	S
1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28

"Gyrangle," by George W. Hart (www.georgehart.com)
The sculpture is constructed from almost 500 laser-cut steel units, bolted together in a novel way that produces a gyroid surface entirely from equilateral triangles. Shapes come together to reveal a variety of different patterns in the "tunnels" of the sculpture. The first presentation of this interesting geometry was at the USA Science and Engineering Festival in Washington DC, October 2010 The completed 42 " sculpture was donated to Towson University. The work is described in detail at www.georgehart.com/DC -George Hart

APRIL 2012

SUNDAY	MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY	SATURDAY	
1	2						

S	M	T	W	T	F	S
4		5	6	7	8	
4	5	6	9	8		
11	12	13	14	15	16	17
18	19	20	21	22	23	24
25	26	27	28	29	30	31

	S M	T	T	V	T	F	
			1	2	3	4	
13	${ }_{6}^{6} 1$	78	5	9	1	1	
20	021	12	2	3	24	25	
	728	29		0	31		

"Calla Lily 32 infinity," by Chaim Goodman-Strauss (University of Arkansas) (http://mathbun.com/main.php)

The group SL_2(Z) acts on the hyperbolic plane discretely, producing patterns of symmetry type 23 infinity, such as the one shown here. Similarly, the 2 -fold cover GL_2(Z) acts with symmetry type *23 infinity. This image is from "The Symmetries of Things", by John H . Conway, Heidi Burgiel and Chaim Goodman-Strauss (AK Peters, 2008). - Chaim Goodman-Strauss

MATHEMATICAE

 IMABERY View MATHEMATICAL IMAGERY, mathematics-
inspired and mathematically-generated works in insprired and mathematically-generated works in
various media. Send an eppostcard and link to various media. Send an e-postcard and ins to
online galleries and articles at www.ams.org/ online gallerie
mathimagery.

MAY 2012

SUNDAY	MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY	SATURDAY	

		M	T	W	T	F	S
		2	3	4	5	6	7
		9	10	11	12	13	14
15	51	16	17	18	19	20	21
	22	23	24	25	26	27	28

[^0] -

"Tree Frog, opus 280," by Robert J. Lang. Photograph by Robert J. Lang
Medium: One uncut square of Origamido paper, composed in 1993, folded in 2005, 5". The intersections between origami, mathematics, and science occur at many levels and include many fields of the latter. Origami, like music, also permits both composition and performance as expressions of the art. Over the past 35 years, I have developed over 480 original origami compositions. About a quarter of these have been published with folding instructions, which, in origami, serve the same purpose that a musical score does: it provides a guide to the performer (in origami, the folder) while allowing the performer to express his or her own personality through
interpretation and variation. - Robert J. Lang

Read the FEATURE COLUMN, a series of essays on various mathematical topics written by David Phillips, at www.ams.org/featurecolumn.

JUNE 2012

SUNDAY	MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY	SATURDAY
Mathematics Research Communities, Snowbird, UT Us and dates at www.ams.org/programs/re					1	2
3	4	5	6	7	8	9
10	11	12	13	14	15	16
17	18	19	20	21	22	23
		Balse Pesalal (1623)				
24	25	26	27	28	29	30

| S | M | T | W | T | F | S |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | 7 | 8 | 2 | 3 | 4 | 5 |
| 6 | 14 | 10 | 11 | 12 | | |
| 13 | 14 | 15 | 16 | 17 | 18 | 19 |
| 20 | 21 | 22 | 23 | 24 | 25 | 26 |
| 27 | 28 | 29 | 30 | 31 | | |

	M	M T	W	T	F	
	$\begin{array}{lll}1 & 2 \\ 8 & 9\end{array}$	$\begin{array}{lr}2 & 3 \\ 9 & 10\end{array}$	$\begin{array}{ll}3 & 4 \\ 11 \\ 1\end{array}$	$\begin{array}{ll} 4 & 5 \\ 1 & 12 \end{array}$	13	
15	1516	117	18	19	20	21
22	23	24	42	26	27	
29	30					

"Sudoku 4B," by Kerry Mitchell (Phoenix College, Phoenix, AZ)
Photographic print, 17 " wide $\times 17^{\prime \prime}$ high, 2007. In this image, I brought the notion of a Sudoku puzzle to a 4×4 grid, where I used shapes instead of the digits 1-4.I retained the requirement that each element of the four-character alphabet appear once and only once in each row, column, and in each of the four 2×2 sub-grids. In addition, I added an element of layering: Each finished image is a composition of four layers, with each layer being its own solved Sudoku grid. "My work is composed primarily of computer generated, mathematicallyinspired, abstract images. I draw from the areas of geometry, fractals, numerical analysis, and physics, and combine these ideas with few, relatively simple, rules. Inherent in this process are feedback and connectivity; these are the elements that generate the patterns. They also demonstrate to me that mathematics is, in many cases, a metaphor for the beauty and complexity in life. This is what I try to capture. -Kerry Mitchell (http://kerrymitchellart.com)

:(AMS
 BOOKSTORE
 www.ams.org/bookstore

The AMS BOOKSTORE includes books, journals, gift items, and web-only sales. See www.ams.org/
bookstore and sign up for the New Title Email Notification service

JULY 2012

SUNDAY	MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY	SATURDAY
1 Gottfried Wilhelm Leibniz (1646)	2	3	4 Independence Day (U.S.)	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	31				

S	M	T	W	T	F	S	
3						1	2
3	4	5	6	7	8	9	
10	11	12	13	14	15	16	
17	18	19	20	21	22	23	
24	25	26	27	28	29	30	

	S M	M	W		T	F	
		6			9	10	
	2	31			16	17	
19	920	2			23	24	25
	627	27			30	31	

"Cuboctahedral Symmetries to Travel," by S. Louise Gould (Connecticut State University, New Britain)

Original digitized machine stitched patterns on cotton reinforced by Timtex, Five moveable pieces, collapsible each 3 " $\times 3^{\prime \prime} \times 3^{\prime \prime}, 2009$ Conway enumerates the 7 spherical symmetries compatible with the uniform polyhedra in "The Symmetries of Things." Using the symmetry types these are $332, * 332,432,3 * 2, * 432,532$ and $* 532$. The simple cuboctahedron exhibits the first 5 of the symmetr patterns: *432 has 48 symmetries (the full group of symmetries), *332, 432 and $3 * 2$ have 24 (the three subgroups of index $2=48 / 24$) while 332 has only 12 (the ones of index $4=48 / 12$). Coloring the faces of the models for the Archimedean solids is a natural extension of my recent work with pop-up polyhedra. "My mathematical art grows out of my experiences with my students and my explorations of mathematics, textiles, paper, and technology. I enjoy working with computer controlled machines such as the computerized embroidery sewing machine and the Craft Robo (plotter cutter) as well as traditional looms and knitting machines.

- S. Louise Gould

AUGUST 2012

SUNDAY	MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY	SATURDAY
					1	2

SULY	M	T	W	T	F	S
1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	31				

SEPTEMBER 2012

S	M	T	W	T	F	S	
2	3	4	5	6		1	
9	10	11	12	13	14	8	
16							
16	17	18	19	20	21	22	
23	24	25	26	27	28	29	
30							

"Natural Cycles," by Erik and Martin Demaine (Massachusetts Institute of Technology, Cambridge, MA)

Elephant hide paper, $9^{\prime \prime} \times 9^{\prime \prime} \times 9^{\prime \prime}$, 2009. The sculpture is a modular combination of three interacting pieces. Each piece is folded by hand from a circle of paper, using a compass to score the creases and cut out a central hole.This transformation of flat paper into swirling surfaces creates sculpture that feels alive. Paper folds itself into a natural equilibrium form depending on its creases. These equilibria are poorly understood, especially for curved creases. We are exploring what shapes are possible in this genre of self-folding origami, with applications to deployable structures, manufacturing, and self-assembly. "We explore many mediums, from sculpture to
 solve problems in mathematics." -Erik Demaine (http://erikdemaine.org/curved/NaturalCycles/)

"Torus Knot (5,3)," by Carlo H. Séquin (University of California, Berkeley) Second Place Award, 2011 Mathematical Art Exhibition

Bronze with silver patina, $10^{\prime \prime} \times 8^{\prime \prime} \times 16^{\prime \prime}, 2010$. Torus knots of type (p, q) are simple knots that wind around an invisible donut in a regular manner - p times around the hole, and q times through the hole. By using a somewhat more angular shape for the donut and a variable-size, crescent- ahaped cross section for the ribbon, this mathematical construct can be turned into a constructivist sculpture
The challenge was to find a way to make a mold for casting this highly intertwined structure. The solution was to cast three identical pieces, which were then threaded together and welded to each other. -Carlo H. Séquin (http://www.cs.berkeley.edu/~sequin/)

OCTOBER 2012

SUNDAY	MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY	SATURDAY
	1	2	3	4	5	6
7	8	9	10	11	12	13
	Columus Day (S.5)					Ans Seritonal Neeting
14	15	16	17	18	19	20
Ans setional Neeting						Ans Sectional Meein
21	22	23	24	25	26	27
ANS Sectional Neeting				Earase Calas 8811		ANS Sectiond Necting
28	29	30	31	AMS Sectional 13-14: Tulane Un (Southeastern) 20-21: University 27-28: University		,LA l) (

"Sierpinski Theme and Variations," by Larry Riddle (Agnes Scott College, Decatur, GA)
Counted cross stitch on fabric (25 count per inch), 13.5" $13.5^{"}$, 2009. The Sierpinski Triangle is a fractal that can be generated by dividing a square into four equal subsquares, removing the upper right subsquare, and then iterating the construction on each of the three remaining subsquares. That is our "Theme", shown in the upper left. The "Variations" arise by exploiting symmetries of the square. The three variations in this piece were generated by rotating the upper left and lower right subsquares at each iteration by 90
or 180 degrees, either clockwise or counterclockwise. The self-similarity of the fractals, illustrated by the use of three colors, means that you can read off which rotations were used from the final image. Each design shows the construction through seven iterations, the limit that could be obtained for the size of canvas used. -Larry Riddle (http://ecademy.agnesscott.edu/~lriddle/)

B- ำ Link to AMS Facebook, Twitter, YouTube, Linkedin,
Blogs, and share comments, from www.ams.org/
about-us/social. about-us/social.

NOVEMBER 2012

SUNDAY	MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY	SATURDAY	

S	M	T	W	T	F	S
7	1	2	3	4	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27
28	29	30	31			

DECEMBER 2012

| S | M | T | W | T | F | S | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
| 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
| 16 | 17 | 18 | 19 | 20 | 21 | 22 | |
| 23 | 24 | 25 | 26 | 27 | 28 | 29 | |
| 30 | 31 | | | | | | |

"UncertainEnd," by Mike Field (University of Houston)
UncertainEnd" is a section of a planar repeating pattern of type p’_(cilgg (or, in Coxeter notation, cmm/pgg). Ignoring the colors, the underlying pattern is of type cmm and is the superposition of two colored patterns, each of type pgg. The pattern was generated using an iterated function system defined on the two-dimensional torus. The resulting pattern on the torus was lifted to the plane to obtain a repeating pattern. The coloring reflects invariant measures on each of the underlying patterns of type pgg and takes account of overla as well as sy

- Mike Field

DECEMBER 2012

SUNDAY	MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY	SATURDAY							
2													

NOVEMBER 2012						
S	M	T	W	T	F	S
4	5	6	7	1	2	3
11	12	13	14	15	9	10
10	17					
18	19	20	21	22	23	24
25	26	27	28	29	30	

$c \mid$							
JANUARY	M	T	W	T	F	S	
		1	2	3	4	5	
6	7	8	9	10	11	12	
13	14	15	16	17	18	19	
20	21	22	23	24	25	26	
27	28	29	30	31			

2012 at a glance

2013 at a glance

JANUARY							
	M	T	W	T	T	F	
						11	
13	14	15	16	17	71	18	19
20	21	22	23	2		25	26
	28	29	30	3			

(10)AMS

MATHEMATICAL
IMAEERY
Explore the world of mathematics and art, send an e-postcard, and bookmark this page to see new featured works.

Byan mencrae hatim

Youare vemomog page 1

뜨․․․․․․․․․․․
www.ams.org/mathimagery

2012 Calendar of Mathematical Imagery

(aydand

American Mathematical Society
201 Charles Street
Providence, RI 02904-2294 USA tel: 401-455-4000 fax: 401-331-3842

[^0]: S M T W T | S M | T | W | T | F | S | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | 3 | 4 | 5 | 6 | 7 | 1 | 2 |
 | | 4 | 5 | | | 9 | | $\begin{array}{rrrrrrr}3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 10 & 11 & 12 & 13 & 14 & 15 & 16 \\ 17 & 18 & 19 & 20 & 21 & 22 & 23\end{array}$ $\begin{array}{lllllll}10 & 11 & 12 & 13 & 14 & 15 & 16 \\ 17 & 18 & 19 & 20 & 21 & 22 & 23 \\ 24 & 5 & 26 & 27 & 28 & 29 & 30\end{array}$

